A DISTORTION PROBLEM FOR THE SPACE $\ell_{\infty}^{c}(\omega_{1})$

BY

NICHOLAS SPARKS

Mathematical Institute, Oxford University 24-29 St. Giles, Oxford OX1 3LB, England e-mail: nicholas.sparks@flemings.com

ABSTRACT

The Banach space $\ell_{\infty}^{c}(\omega_{1})$ is the space of bounded ω_{1} -sequences of countable support. A pointwise-closed subspace $V \leq \ell_{\infty}^{c}(\omega_{1})$ will be called **unbounded** if $\{\min(\sup p(v)): v \in V\}$ is unbounded in ω_{1} . It is shown that there are Lipshitz functions $f \colon \operatorname{Sph}(\ell_{\infty}^{c}(\omega_{1})) \to \mathbb{R}$ which have large variation on the unit sphere of any unbounded subspace. This answers a question implicit in Partington [P 80].

1. Introduction

Partington [P 80] has studied equivalent norms on various subspaces of the Banach space $\ell_{\infty}(\omega_1)$ of bounded real valued functions on ω_1 . In particular he was able to prove a strong theorem for the space $\ell_{\infty}^c(\omega_1)$ of bounded functions of countable support on ω_1 with the supremum norm. A sequence of unit vectors $\langle x_{\alpha}: \alpha < \omega_1 \rangle$ in $\ell_{\infty}^c(\omega_1)$ will be called **successive** if for all $\alpha < \beta < \omega_1$ we have $\sup(\sup(x_{\alpha})) < \min(\sup(x_{\beta}))$.

THEOREM 1 (Partington [P 80]): Let |||.||| be a norm on $\ell_{\infty}^{c}(\omega_{1})$ which is equivalent to the supremum norm ||.||. There is a successive sequence $\langle x_{\alpha} : \alpha < \omega_{1} \rangle$ of vectors $x_{\alpha} \in \text{Sph}(\ell_{\infty}^{c}(\omega_{1}))$ and a real number K > 0 such that the map $T: (\ell_{\infty}^{c}(\omega_{1}), ||.||) \to (\ell_{\infty}^{c}(\omega_{1}), ||.||)$ which takes the vector $v = (v_{\alpha})_{\alpha < \omega_{1}}$ to $K \sum v_{\alpha} x_{\alpha}$ is an isometry.

It is then natural to ask about the stability of Lipschitz functions on Sph $(\ell_{\infty}^{c}(\omega_{1}))$. We will call a pointwise-closed subspace $V \leq \ell_{\infty}^{c}(\omega_{1})$ an **unbounded** subspace of $\ell_{\infty}^{c}(\omega_{1})$ if $\{\min(\sup(v)): v \in V\}$ is unbounded in ω_{1} . The main purpose of this paper is to construct Lipschitz functions on $\mathrm{Sph}(\ell_{\infty}^{c}(\omega_{1}))$ which have large variation on the unit sphere of any unbounded subspace of $\ell_{\infty}^{c}(\omega_{1})$.

126 N. SPARKS Isr. J. Math.

THEOREM 2: There is a Lipschitz function $f: Sph(\ell_{\infty}^{c}(\omega_{1})) \to \mathbb{R}$ such that for all unbounded subspaces $V \leq \ell_{\infty}^{c}(\omega_{1})$ we have

$$\sup[|f(v) - f(u)|: u, v \in Sph(V)] = 1.$$

In fact we shall construct uncountably many such functions each of which is far from any other.

2. The space $\ell_{\infty}^{c}(\omega_{1})$

We shall write

$$\ell_{\infty}(\omega_1) = \{ f : \omega_1 \to \mathbb{R} : \sup(|f(\alpha)| : \alpha < \omega_1) < \infty \}.$$

We define

$$\ell_{\infty}^{c}(\omega_{1}) = \{ f \in \ell_{\infty}(\omega_{1}) : \operatorname{card}(\operatorname{supp}(f)) \leq \aleph_{0} \}.$$

The sup norm on $\ell_{\infty}^{c}(\omega_{1})$ is written ||.|| and is easily seen to make $\ell_{\infty}^{c}(\omega_{1})$ into a Banach space.

3. Unbounded subspaces

Suppose that $\langle x_{\alpha} : \alpha < \omega_1 \rangle$ is a successive sequence. Let $\lambda_{\alpha} \in \mathbb{R}$ for $\alpha < \omega_1$ be a sequence of real numbers. The formal sum $v = \sum_{\alpha} \lambda_{\alpha} x_{\alpha}$ is the function $v : \omega_1 \to \mathbb{R}$ such that

$$v(\beta) = \begin{cases} \lambda_{\alpha} x_{\alpha}(\beta), & \beta \in \operatorname{supp}(x_{\alpha}); \\ 0 & \beta \not\in \bigcup_{\alpha} \operatorname{supp}(x_{\alpha}). \end{cases}$$

We will write $V(\langle x_{\alpha} \rangle)$ for the set of formal sums $v = \sum_{\alpha} \lambda_{\alpha} x_{\alpha}$ which are in $\ell_{\infty}^{c}(\omega_{1})$. We now make the following observations:

Proposition 1:

- 1. If $\langle x_{\alpha} : \alpha < \omega_1 \rangle$ is a sequence of successive vectors in $\ell_{\infty}^c(\omega_1)$, then $V(\langle x_{\alpha} \rangle)$ is an unbounded subspace of $\ell_{\infty}^c(\omega_1)$.
- 2. Let $V \leq \ell_{\infty}^{c}(\omega_{1})$ be an unbounded subspace of $\ell_{\infty}^{c}(\omega_{1})$. There is a successive sequence $\langle x_{\alpha} \rangle_{\alpha < \omega_{1}}$ such that $V(\langle x_{\alpha} \rangle) \subseteq V$.
- 3. If $\langle x_{\alpha} : \alpha < \omega_1 \rangle$ is a successive sequence, then $V(\langle x_{\alpha} \rangle)$ is isometric to $\ell_{\infty}^c(\omega_1)$.

4. Stationary sets in ω_1

A set $S \subseteq \omega_1$ is called **stationary** if it meets every closed unbounded subset of ω_1 . We write \lim for the set of countable \liminf ordinals.

We shall need the following fact concerning stationary sets.

PROPOSITION 2 (Ulam, see Kunen [K 80]): There is a family $\{S_{\zeta}: \zeta < \omega_1\}$ of pairwise disjoint stationary sets, $S_{\zeta} \subseteq \omega_1 \cap \lim$.

5. Proofs of the results

The proof of Theorem 2 is based on the following lemma. It says that there is a large family of subsets of $\mathrm{Sph}(\ell_\infty^c(\omega_1))$ all of which meet the unit sphere of every unbounded subspace $V \leq \ell_\infty^c(\omega_1)$. If $A, B \subseteq \mathrm{Sph}(\ell_\infty^c(\omega_1))$, we write $d(A, B) = \inf(||u - v||: u \in A \text{ and } v \in B)$.

LEMMA 1: There is a sequence $A_{\zeta} \subseteq Sph(\ell_{\infty}^{c}(\omega_{1})), \zeta < \omega_{1}$ such that:

- 1. For all $\zeta \neq \zeta'$, the distance, $d(A_{\zeta}, A_{\zeta'}) = 1$.
- 2. For all successive sequences $\langle x_{\alpha} : \alpha < \omega_1 \rangle$ and for all $\zeta < \omega_1$ we have $A_{\zeta} \cap V(\langle x_{\alpha} \rangle) \neq \emptyset$.

If $v \in \operatorname{Sph}(\ell_{\infty}^{c}(\omega_{1}))$ is a unit vector in $\ell_{\infty}^{c}(\omega_{1})$ write $\limsup(v) = 1$ if, for all $\delta < \sup(\sup(v))$, then $\sup(|v(\beta)|: \beta > \delta) = 1$.

For each $\zeta < \omega_1$, define

$$\mathcal{A}_{\zeta} = \{v \in \mathrm{Sph}(\ell_{\infty}^{c}(\omega_{1})) \colon \limsup(v) = 1 \text{ and } \sup(\sup(v)) \in S_{\zeta} \, \}.$$

Thus, for instance, if $\alpha \in S_{\zeta}$, then $1_{\alpha} = \sum_{\beta < \alpha} \in \mathcal{A}_{\zeta}$.

Proof of Lemma 1: We will show that the sets A_{ζ} described above satisfy Theorem 1.

We first check that if $\zeta \neq \zeta'$ then $d(\mathcal{A}_{\zeta}, \mathcal{A}_{\zeta'}) = 1$. To this end, let $u \in \mathcal{A}_{\zeta}$ and $v \in \mathcal{A}_{\zeta'}$. Let $\alpha = \sup(\sup(u)) \in S_{\zeta}$ and $\beta = \sup(\sup(v)) \in S_{\zeta'}$.

We may suppose that $\alpha < \beta$, in which case $u \upharpoonright (\alpha, \beta) = 0$. However, $v \in \mathcal{A}_{\zeta'}$ and so $\limsup(v) = 1$. Thus, $\sup(|v(\delta)|: \delta > \alpha) = 1$ and so $\|v \upharpoonright (\alpha, \beta)\| = 1$. This means that $d(u, v) \ge 1$ and so $d(\mathcal{A}_{\zeta}, \mathcal{A}_{\zeta'}) \ge 1$.

Let $\mu \in S_{\zeta}$ and $\nu \in S_{\zeta'}$. Then $u = 1_{\mu} \in \mathcal{A}_{\zeta}$ and $v = 1_{\nu} \in \mathcal{A}_{\zeta'}$. In addition, d(u,v) = 1 and thus $d(\mathcal{A}_{\zeta}, \mathcal{A}_{\zeta'}) \leq 1$. Combining this and the previous observations we see that $d(\mathcal{A}_{\zeta}, \mathcal{A}_{\zeta'}) = 1$.

Let $\langle x_{\alpha} : \alpha < \omega_1 \rangle$ be successive. Consider the set

$$X = \{ \sum_{\alpha < \beta} x_{\alpha} \colon \beta \in \lim \} \subseteq V(\langle x_{\alpha} \rangle).$$

128 N. SPARKS Isr. J. Math.

We first observe that if $v \in X$, then $\limsup(v) = 1$.

Let $\tau_{\beta} = \sup(\sup(\sum_{\alpha < \beta} x_{\alpha}))$. The sequence $\bar{\tau} = (\tau_{\beta})_{\beta < \omega_{1}}$ is thus strictly increasing. To complete the proof of Lemma 1, it is enough to show that the sequence $\bar{\tau}$ is closed in ω_{1} (it is clearly unbounded). For then, for all $\zeta < \omega_{1}$ we will have $S_{\zeta} \cap \bar{\tau} \neq \emptyset$. Let $\tau_{\beta} \in \bar{\tau} \cap S_{\zeta}$. The vector $x = \sum_{\alpha < \beta} x_{\alpha}$ then satisfies $\limsup(x) = 1$ and $\sup(\sup(x)) \in S_{\zeta}$ and so $x \in S_{\zeta}$. To see that $\bar{\tau}$ is closed, let $\alpha_{0} < \alpha_{1} < \cdots$ be a strictly increasing sequence of countable ordinals. Let $\alpha = \sup_{n}(\alpha_{n})$. Thus $\alpha \in \lim_{n \to \infty} \text{Clearly } \tau_{\alpha} \in \sup(\tau_{\alpha_{n}})$. Now let $\delta < \alpha$. There is $\beta < \alpha$ such that $\sup(\sup(x_{\beta})) \geq \delta$. Because $\beta < \alpha$ there is n such that $\alpha_{n} \geq \beta$, in which case $\tau_{\alpha_{n}} = \sup(\sup(\sup(x_{\alpha_{n}})) \geq \delta$. Clearly for every n, τ_{α} is at least $\tau_{\alpha_{n}}$. Thus $\tau_{\alpha} = \sup(\tau_{\alpha_{n}})$ and this is enough to show that $\bar{\tau}$ is indeed closed.

We may now complete the proof of Theorem 2.

Proof of Theorem 2: Let $\zeta < \omega_1$ be a countable ordinal. Define f_{ζ} : Sph $(\ell_{\infty}^c(\omega_1))$ $\to \mathbb{R}$ by the equation $f_{\zeta}(v) = d(\{v\}, \mathcal{A}_{\zeta})$. The functions f_{ζ} are Lipschitz with constant 1.

Let $\zeta \neq \zeta'$ be distinct ordinals in ω_1 and $V \leq \ell_{\infty}^c(\omega_1)$ be an unbounded subspace. By Proposition 1.2, there is successive sequence $\langle x_{\alpha} : \alpha < \omega_1 \rangle$ such that $V(\langle x_{\alpha} \rangle) \subseteq V$. By Lemma 1, $A_{\zeta} \cap \operatorname{Sph}(V(\langle x_{\alpha} \rangle)) \neq \emptyset$ and $A_{\zeta'} \cap \operatorname{Sph}(V(\langle x_{\alpha} \rangle)) \neq \emptyset$. But, we also know from Lemma 1 that $d(A_{\zeta}, A_{\zeta'}) = 1$. Thus

$$\sup[|f_{\zeta}(u) - f_{\zeta}(v)| \colon u, v \in \operatorname{Sph}(V)] \ge 1.$$

ACKNOWLEDGEMENT: I should like to thank my Oxford D.Phil. supervisor Dr R. G. Haydon for introducing me to this problem.

References

- [K 80] K. Kunen, Set Theory, North-Holland, Amsterdam, 1980.
- [P 80] J. R. Partington, Equivalent norms on spaces of bounded functions, Israel Journal of Mathematics 35 (1980), 205-209.